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We present results for large scale linear stability analysis of buoyancy
driven fluid flows using a parallel finite element CFD code (MPSalsa) along
with a general purpose eigensolver (ARPACK). The goal of this paper is
to examine both the capabilities and limitations of such an approach, with
particular focus on solving large problems on massively parallel computers
using iterative methods. We accomplish our goal by solving a large vari-
ety of two and three dimensional problems of varying difficulty, comparing
our results (whenever possible) to semi-analytical results. We also care-
fully explain how we successfully combined Cayley transformations with
an Arnoldi based eigensolver and preconditioned Krylov methods for the
necessary linear solves.

For problems where the advective terms are not significant, we achieve
excellent convergence of the computed eigenvalues as we refine the finite
element mesh. We also successfully solve advectively dominated problems,
but the convergence is slower. We believe that the main difficulties arise
not from problems with the eigensolver, but from the accuracy of the finite
element discretization. Therefore, we believe that our results are as reli-
able as using transient integration but are more efficiently computed. The
largest eigenvalue problem we solve has over 16 million unknowns on 2048
processors.

Key Words: stability, Navier Stokes, eigenvalues, buoyancy driven flow, Arnoldi, bifur-
cation, finite element, massively parallel

1. INTRODUCTION
Much of our understanding of fluid flow phenomena comes from linearized sta-

bility analyses of simple flows, such as the state of rest, Couette flow, or Poiseuille
flow [3, 22, 10, 18]. Modern computational fluid dynamicists routinely analyze the
stability of more complicated flows using a variety of methods (e.g. spectral meth-
ods, boundary integral methods). However, the majority of these calculations are
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done in such a way that the resulting linear systems can be solved using direct
methods, and the calculations are typically done using codes that are tailored for
the particular problem of interest [2, 41, 6].

In this paper we are concerned with the problem of combining a general purpose
massively parallel finite element CFD code (MPSalsa [32]) with an existing Arnoldi
based eigensolver (ARPACK [20]) and a parallel Krylov methods package (AZTEC
[38]) for linearized stability analysis. MPSalsa discretizes the Navier-Stokes equa-
tions and applies Newton’s method to solve for the steady state. This is in contrast
to the standard approach of performing a transient calculation. While tried and
true, this latter approach does not allow the computation of ‘unstable steady states’.
The former approach does detect unstable steady states thus allowing bifurcation
analysis; the reader is referred to the recent review article [8] for further information
along these lines.

The purpose of this paper is to explore the limits of our computational approach
for linear stability analysis on a representative class of problems. For example, can
we reliably determine the linear stability of a simple problem such as the Rayleigh-
Bénard problem and for a more difficult problem such as turbulent transition in a
boundary layer?

We carefully address the difficulty in the numerical solution of the eigenvalue
problem and consider the sensitivity of the eigenvalues to discretization errors. We
present a variety of problems of varying degrees of difficulty and show how our
linearized stability analysis behaves on these problems. We validate our results by
comparing the calculations to analytical solutions, highly resolved spectral calcula-
tions, or to published results involving time dependent numerical calculations. In
addition, we verify our results via mesh refinement for the finite element discretiza-
tion and by checking the residual accuracy of our computed eigenvalues and linear
systems.

Because our interest is in discretized Navier-Stokes equations that lead to linear
systems of order 104—107 for two and three dimensional problems, direct methods
(let alone sparse direct methods) for the linear solves or subspace iteration for the
eigensolve are not an option. We will demonstrate that parallel Krylov iterative
methods can be reliably used for large-scale linear stability analysis on massively
parallel machines.

We are not aware of any study comparable in scope to ours, that is, a compre-
hensive chronicle of the verification and validation of computational linear stability
analysis utilizing parallel Krylov methods for complex fluid flow. We believe our
approach to be as reliable as calculations accomplished with transient based meth-
ods. We believe our approach to be more efficient than transient based methods
because we use a Krylov subspace method and use a frozen Jacobian and the
non-linear convection solve made at every time step by a transient calculation is
avoided. Moreover, our approach also provides qualitative information on the fluid
flow not otherwise available. We believe that our approach is successful because we
have employed the use of three existing robust and sophisticated tools: MPSalsa,
ARPACK, and AZTEC.

We have chosen to concentrate on problems involving thermal convection. We
anticipate that our examples will be of use to others interested in testing their
codes’ ability to do linearized stability analysis. We present results demonstrating
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the success of our approach on a wide variety of problems. We do point out that our
approach becomes computationally intensive as the fluid flow is more advectively
dominated.

Advectively dominated flows are characterized by eigenvalues that typically have
a large imaginary part relative to the real part. This results in two major difficulties.
First, it can be difficult to compute the eigenvalues of the discretized system. For
the problems presented in this paper, the use of a Cayley transformation along with
an Arnoldi based algorithm proved sufficient. The second difficulty is that we may
need to discretize the Navier-Stokes equations on a highly resolved mesh so that
the real part of the eigenvalues will approximate those of the continuous system.
We overcome this difficulty only by keeping the size of the linear systems within
reason.

We divide our test problems into four basic groups:

1. Problems where the steady state solution has no flow or is a state of rigid
body rotation. These problems include variants on the classical and the rotating
Rayleigh-Bénard problem. We solve these problems in two and three dimensions
and with different geometries and boundary conditions. We demonstrate excellent
agreement between the computed eigenvalues and those using semi-analytical tech-
niques. We acknowledge that these problems are easy to solve; we include them in
this report for two reasons. First, they allow us to verify and validate our use of
preconditioned Krylov methods, and second, they provide benchmarking data for
others wishing to perform linearized stability analyses.

2. Problems where the steady state solution has flow, but the flow is not advec-
tively dominated. We solve a variety of physically distinct problems: the onset of
convection in a thermo-siphon, the onset of convection in a tilted two dimensional
box, and the onset of convection in a tilted three dimensional box. In all of these
problems the steady state solution whose stability we analyze has a non-zero ve-
locity. But, in all cases this velocity is either small or contributes little to the heat
transfer. We demonstrate convincingly that our code can handle problems of this
type.

3. Problems where the steady state solution is advectively dominated. First, we
consider the problem of flow in a two dimensional box with a heated side wall
[28]. This differs from the flow in a heated slot only in the aspect ratio; however,
the instability that occurs happens at a large value of the Grashoff number and
is an oscillatory instability. We also analyze the problem of stability of a plume
in a closed cylindrical container [36]. The performance of our code on these prob-
lems is somewhat disappointing in that we need fine meshes to accurately compute
converged real parts of the eigenvalues of interest. We will show that this is due
to discretization errors, not to a failure of the eigensolver to compute the correct
eigenvalues. For this reason we believe a transient finite element code would have
the same difficulty accurately computing these flows.

4. The bifurcation of steady state convection rolls into oscillatory convection rolls.
In this problem the steady state solution has a significant flow that affects the heat
transfer, but the flow is still not strongly advectively dominated. Due to the three
dimensional nature of this problem and that we need to make the container large
to remove the end effects of the side walls, it is difficult to get enough resolution to
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(a) 2D Rayleigh-Bénard 
(§4.1)  

(b) 3D Rayleigh-Bénard 
(§4.2)

(c) Axisym. Rotating 
Rayleigh-Bénard (§4.3)

(d) Hele-
Shaw Cell 
(§4.4)

(e) 3D Thermo-Siphon 
(§5.1)

(f) Tilted 2D Box (§5.2) (g) Titled 3D Box (§5.3)

(h) 2D Cavity (§6.1) (i) Axysym. Heated 
Plume (§6.3)

(j) 3D Convection Rolls (§7)
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FIG. 1. Here we illustrate the ten problems considered in this paper. Solid lines represent
no-slip boundary conditions, long dashed lines represent no tangential stress boundary conditions,
and short dashed lines represent periodic boundary conditions. We indicate streamlines of the
base flow.

convincingly solve this problem. We believe that we have just barely managed to
resolve this problem; on our most highly refined grid over sixteen million unknowns
were required for the discretization.

We will now outline the remainder of our report. In Section 2 we state the Navier-
Stokes equations with the Boussinesq approximation governing the motion of all
of the test problems in this paper. We discuss the possibility that mathematically
equivalent but numerically different schemes for making our equations dimensionless



LARGE SCALE EIGENVALUE CALCULATIONS 5

can behave differently. In Section 3 we discuss the finite element code MPSalsa. In
Section 4 we discuss the Cayley transform, how to choose the Cayley parameters and
the Arnoldi based eigenvalue package ARPACK. Section 5 presents the problems
where the basic state is either at rest or uniformly rotating. Section 6 gives results
for problems where the basic flow field is non-trivial, but not advectively dominated.
Sections 7 and 8 give results for oscillatory convection in a slot, the instability of an
axisymmetric confined plume, and the secondary bifurcation from steady rolls into
oscillatory rolls in the Rayleigh-Bénard problem. In Section 9 we highlight some of
the numerical difficulties that arise in the solution of these problems.

2. BASIC EQUATIONS AND THE EFFECT OF DIFFERENT
SCALINGS

Throughout this paper we will be using the Navier-Stokes equations with the
Boussinesq approximation for the flow of a thermally driven incompressible fluid:

∂u
∂t

+ u · ∇u +
1
ρ
∇p = ν∇2u + gβ(T − Tref )eg (1)

∂T
∂t

+ u · ∇T = κ∇2T (2)

∇ · u = 0 (3)

where u = uex + vey + wez, p and T are the velocity, pressure and temperature;
ρ, ν and κ are the density, kinematic viscosity, and thermal diffusivity; g and β are
the acceleration of gravity and the thermal expansion coefficient of the fluid. The
vector eg is a unit vector in the direction of the gravity vector. The Boussinesq
approximation assumes that the temperatures T are all close enough to an average
temperature Tref that we can ignore the variations in density in all terms in the
equations except for the forcing term due to gravity. In these equations we subtract
the hydrostatic part of the pressure.

Other than the physical constants appearing in the equations, the only param-
eters appearing in the problems in this paper are the temperature difference ∆T ,
the characteristic geometrical length L, geometrical aspect ratios, and in one of the
problems, the rotation rate Ω. In all of the problems considered the length L is the
height or width of our container and Tref + ∆T is the temperature on some part
of the boundary. The other parts of the boundary either have no flux conditions or
are at a temperature of Tref .

The remainder of this section discusses the important issues of dimensionless
parameters and the impact on scaling. Any dimensionless parameters that result
from the physical parameters from the previous paragraph are functions of the
Rayleigh number

Ra =
gβ∆TL3

κν
,

the Prandtl number

Pr =
ν
κ

,

the Taylor number

Ta =
4R4Ω2

ν2 ,
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and geometrical aspect ratios such as ε = R/L where R is the radius of a cylinder
and L its height.

There are several standard ways of making our equations dimensionless. All these
scalings can be implemented by setting the values of the dimensional variables equal
to simple functions of the Rayleigh and Prandtl numbers within the code. In this
paper we typically achieve the desired Rayleigh and Prandtl numbers by selecting
ν = g = β = ρ = L = 1, and κ = 1/Pr. We then control the Rayleigh number
using Ra = ∆TPr.

There are two points we would like to make about our choice of scaling. The
first point is that scaling changes the eigenvalues. This is not a numerical issue,
but merely an issue of how to transform between different scalings. Our scaling
uses the dimensionless time t̂ = t/t0 where t0 = L2

ν . We compute dimensionless
eigenvalues λ. The physical eigenvalues λphysical are given by

λphysical = λ
νphysical

L2
physical

.

Here νphysical and Lphysical are the physical values of ν and L, rather than the
values used in our calculations (usually unity).

If a calculation is done using an alternative scaling that leads to identical values
of the dimensionless constants, then the alternative eigenvalues are related by the
expression

λalt = λ
νalt

L2
alt

L2
ours

νours
,

where νalt and Lalt are the values of ν and L used in the alternative scaling, and
νours and Lours are the values used in our calculation.

The second point about scaling deals with numerical issues. In theory our com-
puted approximations to physical quantities should not depend on our choice of
how to make the equations dimensionless, but in practice roundoff errors might
reveal a sensitivity. Earlier versions of our linear solver demonstrated a sensitivity
upon the scaling of the problem. For the simplest problem we present, the classi-
cal Rayleigh-Bénard problem in two dimensions, we found that a balanced scaling
where ν = 1/Ra1/2 and ∆T = Ra1/2, achieved satisfactory results, but when we
used ν = 1 and ∆T = Ra, no significant digits in the eigenvalues were computed
when Ra = 2000. This sensitivity was traced to a use of a classical Gram-Schmidt
algorithm needed by the GMRES algorithm used for the solution of the linear equa-
tions. The cure was to employ a two step classical Gram-Schmidt algorithm (the
second step is to ensure orthogonality).

3. SPATIAL DISCRETIZATION AND THE NON-LINEAR SOLVE
A full description of the numerical methods in MPSalsa used to locate steady

state solutions of Equations (1)—(3) is available in [32] and the references listed
therein. A brief overview is presented in this section.

A mesh of quadrilaterals for 2D problems and hexahedra for 3D problems is gen-
erated to cover the domain. Although the code allows for general unstructured
meshes, all the example problems in this paper use structured meshes. For parallel
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runs, the mesh is partitioned using the Chaco code [14] in a way that will dis-
tribute work evenly while minimizing communication costs between processors. A
Galerkin/least-squares finite element method [16] (GLS-FEM) is used to discretize
the time-invariant versions of the governing partial differential equations (1)—(3)
into a set of nonlinear algebraic equations. This formulation includes a pressure
stabilization term so that the velocity components, temperature, and pressure fields
can all be represented with equal order nodal basis functions. GLS-FEM is a consis-
tent stabilized scheme because when the exact solution is inserted, the Boussinesq
equations are satisfied exactly. We use bilinear and trilinear nodal elements for two
and three dimensional problems, respectively.

Discretization of (1)—(3) results in the matrix equation

(

M 0
N 0

)[

u̇
ṗ

]

+
(

Ku,T + C(u) −D
DT + G Kp

)[

u
p

]

−
[

g
h

]

=
[

0
0

]

(4)

where u is the vector of fluid velocity components and temperature unknowns, p is
the pressure, M is the symmetric positive definite matrix of the overlaps of the finite
element basis functions, Ku,T is the stiffness matrix associated with velocity and
temperature, C(u) is the nonlinear convection, D is the discrete (weak) gradient,
DT is the discrete (weak) divergence operator, and Kp is the stiffness matrix for
the pressure. G,Kp,N are stabilization terms arising from the GLS-FEM. The
vectors g and h denote terms due to boundary conditions and the Boussinesq
approximation.

The resulting nonlinear algebraic equations arising from setting the time deriva-
tive terms to zero are solved using a fully coupled Newton-Raphson method [33].
An analytic Jacobian matrix for the entire system is calculated and stored in a
sparse matrix storage format. At each Newton-Raphson iteration, the linear sys-
tem is solved using the Aztec package [38] of parallel preconditioned Krylov iterative
solvers. The accuracy of the steady state solve is determined by

(

1
N

N
∑

i=1

(

|δi|
εR|xi|+ εA

)2
)

1
2

< 1.0 (5)

where εR and εA are the relative and absolute tolerances desired, δi is the update for
the unknown xi, and N is the total number of unknowns. We used relative and abso-
lute tolerances of 10−5 and 10−8, respectively, for the problems. We exclusively use
an unrestarted GMRES iteration with a non-overlapping Schwarz preconditioner
where an ILU preconditioner is used on each sub-domain (each processor contains
one sub-domain). These methods enable rapid convergence to both stable and un-
stable steady state solutions. The scalability of these methods to large system sizes
and numbers of processors is demonstrated by the solution of a 16 million unknown
model on 2048 processors in Section 8.

4. THE DISCRETIZED EIGENVALUE PROBLEM AND CAYLEY
TRANSFORMS

The GLS-FEM results in a spatial discretization of the Navier-Stokes equations
with the Boussinesq approximation. This leads to a finite dimensional system of
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differential algebraic equations of the form

Bẋ = F(x), x(0) = x0, (6)

where the matrix B is singular (due to the divergence free constraint) and x is
a vector containing the values of the velocities, temperature and pressure at the
nodes of the finite element mesh. Because of the stabilization terms in the GLS
discretization, B, the matrix associated with the time derivative term in (4), is a
non-symmetric matrix.

Suppose we have a steady state solution xs so that F(xs) = 0. The stability of
this solution is typically determined in one of two ways. The first approach solves
the generalized eigenvalue problem

λBz = J(xs)z ≡ Jz. (7)

that arises from the linearization of (6) about the steady state. The matrix J(xs) is
the Jacobian of F(·) linearized at xs. If all the eigenvalues of (7) have negative real
parts, the steady state is stable. We assume that the λ’s are ordered with respect
to decreasing real part; real(λj) ≤ real(λi) for i > j.

This approach has received much attention in the last fifteen years; the reader is
referred to [4, 7, 12, 26, 11, 21, 37, 39, 25] for information. Except for [39], all of these
papers advocate converting the generalized eigenvalue problem (7) into a standard
eigenvalue problem and then solving the resulting set of linear equations during
each iteration of the eigensolver. Except for [11, 21, 37], the eigenvalue problem
is solved using inverse subspace iteration or Arnoldi’s method with a sparse direct
method for the resulting linear set of equations. This typically limits the linear
stability analysis to two dimensional problems. Our approach of using Cayley
transformations to reduce (7) to a standard eigenvalue problem leads the authors
of [12, p.1189] to state that all such “variants that we tested failed”. The use
of preconditioned Krylov methods for both the eigenvalue problem and ensuing
linear solves for large-scale two and three dimensional problems is not generally
undertaken. The results of our paper will show otherwise.

The second approach used to determine the stability of a steady state is to use
a time integration scheme; standard time integration schemes typically perform a
nonlinear solve (due to convection) at every time step. We can think of these as
computing an iteration of the form

xn+1 = G(xn). (8)

The iteration is initialized with an iterate near the steady state and if the iteration
converges towards the fixed point xs, then the steady state is declared stable. If x0

is an initial condition for (8), then the convergence and numerical stability of the
fixed point iteration is determined by the spectral radius of the Jacobian of G(·).
In particular, denote the eigenvalues of Gx(x0) by γi ordered so that |γj | ≤ |γi| for
i > j.

A popular time integration scheme is given by the trapezoidal rule and results in
the iteration

xn+1 = G(xn) =
(

B− 4t
2

J
)−1 (

B +
4t
2

J
)

xn (9)
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where the Jacobian is ‘frozen’ at the steady state. The eigenvalues γi and λi are
related via

γi = −
λk + 2

4t

λk − 2
4t

i = 1, . . . , n; k = 1, . . . , n

and so, in principle, the eigenvalues of (7) can be determined by computing those
of

− (J− σB)−1 (J− µB) z ≡ Gz = −γz

where µ = −σ = 2/4t. The above discussion demonstrates that at a steady state,
time integration and computing the eigenvalues of (7) are intimately related when
a frozen Jacobian approximation is employed. We remark that although large-scale
eigensolvers (subspace iteration or Arnoldi’s method) applied to G tend to favor
the computation of γ1, γ2, . . . , γr—those largest in magnitude—these may not be
the desired rightmost eigenvalues λ1, . . . , λr. This occurs, for instance, when the
flow is advectively dominated.

We now explain why Arnoldi’s method for the eigenvalue solvers is preferred to
the typically undertaken transient calculation. A transient calculation (with the
linearized Jacobian J) or fixed point iteration is equivalent to the power method
on G. The rate of convergence to the eigenvector associated with γ1 is |γ2/γ1|.
The rate of convergence improves to |γm+1/γ1| if the power method is replaced by
subspace iteration on m vectors. However, the resulting rate of convergence can be
intolerable.

The rate of convergence to γ1, γ2, . . . , γr may be dramatically improved by pro-
jecting G onto the column space of

x0,x1, · · · ,xm.

Arnoldi’s method [1] iteratively determines an orthogonal basis for the above col-
umn space that by definition is a Krylov subspace.

4.1. Arnoldi’s method and the numerical solution of the eigenvalue
problem

The remainder of the section reviews several issues with the use of Arnoldi’s
method for the numerical solution of the eigenvalue problem. We use the parallel
implementation [23] P ARPACK of ARPACK [20] for computing the eigenvalues of
(7) via Cayley transformations. We refer the reader to [21] for information regarding
the use of ARPACK for problems in linear stability analysis.

We discuss the selection of the Cayley parameters σ and µ. The numerical exper-
iments that follow employ two strategies to select the Cayley parameters. The first
strategy was presented in the previous subsection and draws upon a connection with
fixed point iteration. The second strategy was presented in [21]; the Cayley param-
eters are selected 0 < σ < µ so that the condition number of (J− σB)−1(J− µB)
is bounded and so can be efficiently solved with preconditioned Krylov methods.
This second strategy is slightly more efficient than the first strategy; however, it
is not as reliable (nor is there a relationship with fixed point iteration schemes for
determining the stability of the steady state). The lack of reliability manifests itself
when the flow is advectively dominated so that the rightmost λ’s do not correspond
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to the largest in magnitude γ’s. We remark that we encountered this unreliability
in the solution of the problem of the secondary bifurcation from steady rolls into
oscillatory rolls in the Rayleigh-Bénard problem, discussed in section 8. Through-
out the rest of the paper we will refer to the first strategy as Cayley Method A and
the second as Cayley Method B.

We briefly overview several salient issues. The paper [21], section 9 and the
discussion of the numerical experiments performed for each problem provide further
details.

1. We discuss the numerical solution of the linear system resulting from using a
Cayley transformation. We exclusively use an unrestarted GMRES iteration with
a non-overlapping Schwarz preconditioner where an ILU preconditioner is used on
each sub-domain (each processor contains one sub-domain).

2. We must choose the size of the Arnoldi space m (needed by ARPACK). Our
findings, in general, are that for the most difficult problems m was never larger
than 160 and 80 was typically more than adequate. We remark that although
ARPACK does provide a capability to restart the Arnoldi iteration, our experiments
did not use this capability. Instead, our focus is to carefully examine the use of
preconditioned Krylov methods for linear stability analysis.

3. The tolerance needed by the GMRES iteration and ARPACK and their re-
lationship was also carefully studied in [21]. In general, these tolerances were no
larger than 10−6 and no smaller 10−9.

4. Since the Boussinesq equations (1)–(3) model an incompressible fluid, the
starting vector for ARPACK is selected as J−1Bw, where w is a random vector.
The resulting vector is divergence free [24].

5. The P ARPACK subroutines pdnaupd and pdneupd were modified to imple-
ment the Cayley transformation and an improved check for termination. The eigen-
solve is terminated when λ1, λ2, . . . , λr and corresponding approximate eigenvectors
for a user specified r satisfy the residual tolerance.

5. PROBLEMS WHERE THE FLUID IS AT REST OR IN
UNIFORM ROTATION

In this section we present four problems where the base flow is either at rest or
in a uniform state of rotation:

• The Rayleigh-Bénard problem in a two dimensional box.
• The Rayleigh-Bénard problem in a three dimensional box.
• The Rotating Rayleigh-Bénard problem in a cylinder.
• The Rayleigh-Bénard problem in a three dimensional box with two of the ver-

tical side walls closely spaced (a Hele-Shaw cell).

The boundary conditions on the first three of these problems are chosen so that,
in addition to the finite element solution, we can use the method of separation
of variables to turn these higher dimensional eigenvalue problems into one dimen-
sional eigenvalue problems that can be solved accurately. We use spectral colloca-
tion methods [13] to solve these one dimensional problems. We remark that the
boundary conditions for these three problems are not physically realizable. The last
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problem uses physically realizable boundary conditions, but we cannot use separa-
tion of variables to check our answers. Instead we validate our answers using an
asymptotic expansion based on the analogy between a Hele-Shaw cell and a porous
medium. We are then able to use the results for the onset of convection in a porous
medium [42] to verify our calculations.

5.1. The Two Dimensional Rayleigh-Bénard Problem
We consider the Rayleigh-Bénard problem in two dimensions. Our geometry

consists of a rectangular container of height H and length L:

0 ≤ z ≤ H, 0 ≤ x ≤ L.

We specify the temperature at the top and bottom surfaces

T (x, 0) = Tref + ∆T , T (x,H) = Tref ,

and specify that there is no flux of heat through the side walls

∂
∂x

T (0, z) =
∂
∂x

T (L, z) = 0.

We have no-slip boundary conditions on the top and bottom walls

u(x, 0) = u(x,H) = 0.

On the side walls we require that the normal velocity vanishes and that there is no
tangential stress:

u(x, z) =
∂
∂x

w(x, z) for x = 0, L.

This problem has the trivial solution

u = 0

T (x, z) = Tref −∆T (z −H)/H.

In Appendix A we show how to calculate the eigenvalues of the stability problem
associated with this steady state solution using a one dimensional eigensolver.

We solve this problem in MPSalsa with L = 3, H = 1 and all physical parameters
(g, β, ν, and κ) set equal to unity (in particular Pr = 1) except for ∆T , which is
used to control the Rayleigh number. These calculations were done with N mesh
divisions along the length of the rectangle and 2N mesh divisions along the height.
The results for this problem are reported in Table 1. For the finest mesh, we have
116,644 unknowns and solve on 32 processors. We converge to the steady state
easily given a zero initial guess. The number of GMRES solves for each eigensolver
iteration is approximately 200. The time to compute eigenvalues on the finest
mesh is 1374 seconds for Ra=2000. We use Cayley Method B and set the Cayley
parameters σ = 100, µ = 1000 and the Arnoldi size to 50. These results indicate
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that we achieve quadratic convergence towards the exact eigenvalues; we compute
convergence for a given eigenvalue as follows:

Convergence Rate = log2

(

λN/2 − λanalytic

λN − λanalytic

)

.

Note for example that for λ0, Ra = 1500, N = 120, the convergence rate is 2.32.

TABLE 1
The first 4 eigenvalues of the 2D Rayleigh-Bénard Problem with

L = 3 and H = 1, Pr=1, N � 2N uniform mesh

Ra N λ0 λ1 λ2 λ3

1500
15 -1.898 -3.091 -5.151 -7.241
30 -1.699 -3.088 -4.363 -7.251
60 -1.652 -3.088 -4.178 -7.253
120 -1.640 -3.088 -4.133 -7.254
analytic -1.637 -3.088 -4.118 -7.254

2000
15 1.913 -0.4021 -0.6466 -6.154
30 2.100 0.1338 -0.4113 -6.046
60 2.143 0.3146 -0.4141 -5.570
120 2.153 0.3590 -0.4149 -5.454
analytic 2.157 0.3738 -0.4151 -5.415

5.2. The Rayleigh-Bénard Problem in a Three-Dimensional
Rectangular Box

We now add a third dimension and solve the problem on a rectangular box given
by

0 ≤ x ≤ L, 0 ≤ y ≤ W, 0 ≤ z ≤ H.

Once again the boundary conditions on the side walls are chosen so that we can
use separation of variables: the normal velocities, tangential stresses, and normal
temperature gradients all vanish:

u(x, y, z) =
∂v(x, y, z)

∂x
=

∂w(x, y, z)
∂x

=
∂T (x, y, z)

∂x
= 0 for x = 0, L

v(x, y, z) =
∂u(x, y, z)

∂y
=

∂w(x, y, z)
∂y

=
∂T (x, y, z)

∂y
= 0 for y = 0,W.

As in the last section we prescribe no-slip boundary conditions on the horizontal
walls and specify the temperature:

u(x, y, z) = 0 for z = 0, H

T (x, y, 0) = Tref + ∆T, T (x, y, H) = Tref .
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For any value of the Rayleigh number this problem has the solution

u = 0

T (x, y, z) = Tref − (z −H)∆T/H.

In Appendix A we show how to calculate the eigenvalues of the stability problem
associated with this steady state solution using a one dimensional eigensolver. Once
again, we use a spectral collocation code to compute the eigenvalues of the one
dimensional problem.

These calculations were done with MPSalsa on a box with L = 3, H = 1, W = 1,
g = β = ν = κ = 1, and ∆T = Ra. The mesh has N divisions along the length L
and width W , and 2N divisions along the height H. The results for this problem
are reported in Table 2. For the finest mesh, we have 2,251,205 unknowns and
solve on 512 processors. We converge to the steady state for Ra = 500 easily given
a zero initial guess, then use continuation with steps of 500 to achieve the steady
state at Ra = 2000. The number of GMRES solves for each eigensolver iteration
is approximately 500. The time to compute eigenvalues on the finest mesh is 5817
seconds for Ra=2000. We use Cayley method B and set the Cayley parameters
σ = 10, µ = 100 and the Arnoldi size to 24. For the most part, we see quadratic
convergence with mesh size; note that for Ra = 1500 the coarsest mesh does not
show quadratic convergence, but as we refine the mesh we indeed see quadratic
convergence. Note that for λ0, Ra = 1500, N = 60, the convergence rate is 2.06.

TABLE 2
The first 4 eigenvalues of the 3D Rayleigh-Bénard Problem with L =

3, H = 1, W = 1, Pr=1, N �N � 2N uniform mesh.

Ra N λ0 λ1 λ2 λ3

1500
15 -1.518 -1.663 -1.902 -2.614
30 -1.612 -1.700 -1.738 -2.654
60 -1.631 -1.652 -1.761 -2.665
analytic -1.637 -1.637 -1.769 -2.669

2000
15 2.376 2.233 1.909 1.665
30 2.213 2.178 2.098 1.609
60 2.166 2.162 2.148 1.596
analytic 2.162 2.157 2.157 1.587

5.3. The Rotating Rayleigh-Bénard Problem
We now consider the problem of a fluid in a cylindrical container of radius R and

height H whose axis is aligned with the direction of gravity. We use a 2D cylin-
drical coordinate system where the 3D vector (u, v, w) gives the radial, azimuthal,
and axial components of the velocity. We rotate the cylinder about the axis of
symmetry with a constant rotation rate Ω. Other than the change in geometry
and the rotation, this problem is similar to the ones in the last two subsections.
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In particular, on the top and bottom walls we impose no-slip boundary conditions
and prescribe the temperature:

u(r, z) = Ωrez × er for z = 0,H (10)

T (r, 0) = Tref + ∆T, T (r,H) = Tref . (11)

In the first of these equations Ωrez × er is the velocity of the container due to
rotation. Note that in the classical analysis of this problem a Coriolis force is
added to the equations of motion, but we impose the rotation through our boundary
conditions.

Once again, the conditions on the side walls are chosen so that we can separate
variables when solving the eigenvalue problem. We have no axial stress, no normal
velocity, prescribed azimuthal velocity, and no flux conditions on the temperature:

u(r, z) = v(r, z)− rΩ =
∂w(r, z)

∂r
=

∂T (r, z)
∂r

= 0 for r = R. (12)

This problem has an additional dimensionless parameter, the Taylor number:

Ta =
4R4Ω2

ν2 .

This problem differs from the classical Rayleigh-Bénard problem in two respects
[3]:

• For a given Taylor number, the critical Rayleigh number depends on the
Prandtl number.
• If Pr < 1 we can have oscillatory instabilities.

This last point is what makes this an interesting test problem for our eigenvalue
solver.

This problem always has the trivial solution where the fluid rotates like a rigid
body and the temperature varies linearly with height:

u(r, z) = w(r, z) = 0

v(r, z) = rΩ

T (r, z) = Tref −∆T (z −H)/H.

In Appendix A we show how to calculate the eigenvalues of this steady state
solution using a one dimensional eigensolver. We use a spectral collocation code to
compute these eigenvalues.

In our numerical results we use Pr = .025 and Ta = 1096.6, resulting from
ν = g = β = 1, κ = 40, R = 1, and a rotation rate of 500rpm. The calculations
were done in cylindrical coordinates with N divisions in both the r and z directions.
The results for this problem are reported in Table 3. For the finest mesh, we have
73,205 unknowns and solve on 32 processors. We converge to the steady state
easily given a zero initial guess. The number of GMRES solves for each eigensolver
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iteration is approximately 160. The time to compute eigenvalues on the finest
mesh is 1014 seconds for Ra=4000. We use Cayley Method A and set the Cayley
parameters σ = 5, µ = −5 and the Arnoldi size to 50. Again, for the most
part we see quadratic convergence with mesh refinement; note that the coarsest
meshes for Ra = 4000 and Ra = 5000 show less than quadratic convergence, but
as we refine the mesh we get quadratic convergence. Note that for the real part of
λ0, Ra = 4000, N = 120, the convergence rate is 2.17.

TABLE 3
The first 4 eigenvalues of the Rotating Rayleigh-Bénard Problem

with Ta = 4Ω2R4=�2 = 1096:6, R=H = 1, Pr = :025,
N �N uniform mesh

Ra N λ0 λ1 λ2 λ3

4000
15 -10.5 ± 6.75 i -36.0 -40.4 -76.8
30 -8.25 ± 34.5 i -35.3 -55.5 ± 7.48 i -70.6
60 -7.70 ± 39.7 i -33.7 -54.5 ± 15.8 i -68.2
120 -7.56 ± 41.0 i -33.2 -54.3 ± 17.4 i -68.7
analytic -7.52 ± 41.5 i -33.1 -54.2 ± 17.9 i -68.0

5000
15 35.9 -18.9 -36.1 -40.9
30 11.8 -9.33 -24.3 -35.7
60 1.85 ± 17.4 i -28.1 -34.0 -68.0
120 1.98 ± 20.4 i -29.3 -33.5 -66.3
analytic 2.03 ± 21.3 i -29.8 -33.4 -65.7

5.4. Convection in a Hele-Shaw Cell
In this subsection we consider the onset of convection cells in a three dimensional

box with 0 ≤ x ≤ L, 0 ≤ y ≤ W , 0 ≤ z ≤ H. We impose boundary conditions
that are much easier to achieve experimentally: no-slip boundary conditions on all
of the walls, no heat flux boundary conditions on the side walls, and prescribed
temperatures on the horizontal walls:

u = 0 on all walls

T (x, y, 0) = Tref + ∆T, T (x, y, H) = Tref

∂T
∂n

= 0 on all vertical walls.

Once again this problem has the trivial solution where u = 0 and T = Tref −
∆T (z − H)/H. We cannot analyze the stability of this problem using separation
of variables, but if we assume that W/H � 1 and W/L � 1, we can approximate
the eigenvalue problem accurately. The approximate equations are known as the
Hele-Shaw cell approximation [31, p.123-125]. The resulting equations are identical
to the equations for convection in a porous medium, which were analyzed in [42].
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Assuming that the aspect ratio is small, then the pressure and temperature are
nearly independent of y, there is almost no component of velocity in the y direction,
and the velocities u and w vary quadratically with y. The approximate equations
of motion can be written as

uav =
k
µ

(∇p− ρgβ(T − Tref )ez) (13a)

(

∂T
∂t

+ uav · ∇T
)

= κ∇2T (13b)

∇ · uav = 0. (13c)

Here uav(x, z) is the velocity averaged with respect to y. In these equations all
quantities depend only on x and z, and all gradients and divergences are limited to
x and z. In these equations the permeability k is given by

k =
W 2

12
. (14)

The appropriate boundary conditions to impose are

uav(x, z) = wav(x, z) = 0 for x = 0, L and z = 0,H (15)

∂T (x, z)
∂x

= 0 for x = 0, L (16)

T (x, 0) = Tref + ∆T, T (x,H) = Tref . (17)

These equations are equivalent to those for two dimensional flow in a porous
media. They asymptotically govern the motion of the fluid in the Hele-Shaw cell.
They are the first term in an asymptotic expansion in the aspect ratio W/L where
L is the characteristic dimension in the x and z directions. These equations also
assume that ReW , the Reynolds number based on W , is small. We emphasize that
we do not solve these with the finite element code, but use these equations for
validation of our results.

As with the fully three dimensional equations, these equations always have the
trivial solution u = 0, and T (x, z) = Tref + ∆T (z − H)/H. The stability of this
steady solution depends on the Rayleigh number, RaHS , defined as

RaHS =
∆TgβkH

κν
=

∆TgβW 2H
12κν

.

In Appendix B we show how to analyze the stability of this no flow solution by
using separation of variables. The resulting one dimensional eigenvalue problem is
then solved using a spectral collocation method.

In the finite element code, we set L = 1, H = 1 and control the aspect ratio
ε = W/H by changing W . We set g = β = κ = ν = 1.0 and control RaHS with
∆T . In these results there are N mesh divisions along the width W and 2N along
the length L and height H. The results for this problem are reported in Tables 4
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and 5. For the finest mesh, we have 176,505 unknowns and solve on 64 processors.
We converge to the steady state for RaHS = 20 using a zero initial guess, then
use 3 continuation steps to achieve the steady state at RaHS = 40. The number
of GMRES solves for each eigensolver iteration is approximately 600. The time to
compute eigenvalues on the finest mesh is 3906 seconds for Ra=20 and ε = 0.05.
We use Cayley Method B and set the Cayley parameters σ = 10, µ = 100 and the
Arnoldi size to 24.

Though in this case we have asymptotic results as opposed to exact results, the
difference between successive approximations tends towards a quadratic ratio.

TABLE 4
The first four eigenvalues of the Hele Shaw Cell with aspect ratio

� = 1=20, Pr = 1:0, N � 2N � 2N uniform mesh

RaHS N λ0 λ1 λ2 λ3

20
5 -9.927 -9.996 -37.269 -40.705
10 -9.898 -10.112 -35.198 -39.794
20 -9.875 -10.303 -34.630 -39.565
asymptotic -9.739 -9.870 -33.348 -39.478

30
5 -4.982 -9.916 -30.499 -40.669
10 -5.275 -9.899 -27.966 -39.801
20 -5.593 -9.882 -27.269 -39.558
asymptotic -4.739 -9.870 -25.348 -39.478

40
5 0.0685 -9.911 -23.714 -40.621
10 -0.436 -9.886 -20.741 -39.781
20 -0.884 -9.841 -19.891 -39.547
asymptotic 0.261 -9.870 -17.348 -39.478

6. PROBLEMS WITH SMALL BUT NON-TRIVIAL BASE
FLOWS

In this section we present results for problems where the base flow has non-
zero velocity but is not strongly advectively dominated. We present three test
problems: the onset of convection in a thermo-siphon, the onset of convection in
a two dimensional tilted slot, and the onset of convection in a three dimensional
tilted slot.

6.1. The Onset of Convection in a Thermo-Siphon
We now consider the stability of the flow in a closed loop thermo-siphon—a tube

with a circular cross section of radius RT that has been bent into a torus of radius
RH . The hoop walls are held at a prescribed temperature, where the temperature
on the bottom of the hoop is hotter than that at the top.

Although the finite element calculations are done in Cartesian coordinates, the
problem can best be formulated in terms of cylindrical coordinates (r, z, θ) with the
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TABLE 5
The first four eigenvalues of the Hele Shaw Cell on a N � 2N �

2N uniform mesh with N = 20, Pr = 1:0.

RaHS ε λ0 λ1 λ2 λ3

20
.1 -9.875 -11.053 -35.785 -39.560
.05 -9.875 -10.303 -34.630 -39.565
1
∞ -9.739 -9.870 -33.348 -39.478

30
.1 -6.734 -9.869 -29.048 -39.554
.05 -5.593 -9.882 -27.269 -39.558
1
∞ -4.739 -9.870 -25.348 -39.478

40
.1 -2.433 -9.870 -22.365 -39.551
.05 -0.884 -9.841 -19.891 -39.547
1
∞ 0.261 -9.870 -17.348 -39.478

position x given by

x(r, z, θ) = rer + zez (18)

with

ez = (0, 0, 1) (19)

er = (sin(θ), cos(θ), 0) (20)

eθ = (cos(θ),− sin(θ), 0) . (21)

The velocity vectors are defined as

u = uer + veθ + wez. (22)

In this coordinate system, the midline of the hoop is given by r = RH , and each
cross section with θ = constant is a circle of radius RT . In other words, the tube
is described by the equation

(r −Rh)2 + z2 ≤ R2
T .

We apply no-slip boundary conditions everywhere on the tube and prescribe the
temperature on the boundary:

u(r, z, θ) = 0 on boundary (23)

T (r, z, θ) = Tref + ∆Tf(θ) on boundary. (24)

Here f(θ) is a function that gives the temperature on the boundary as a function
of θ; we use functions f(θ) that are even functions of θ.



LARGE SCALE EIGENVALUE CALCULATIONS 19

Assuming that RT � RH , when the temperature difference is small there will be
a small buoyancy-driven velocity field that is symmetric with respect to θ. However,
when ∆T reaches a critical value, this symmetric state goes unstable, and the fluid
will start circulating in one direction or the other. This problem cannot be reduced
to a one dimensional eigenvalue problem. However, assuming that the radius of
the tube is small compared to the radius of the hoop (RT � RH), we can solve
this problem asymptotically. In Appendix C we present an asymptotic analysis for
computing the eigenvalues for this problem.

The analysis in the Appendix shows that provided the aspect ratio ε = RT /RH is
small enough, the stability of the symmetrical solution is governed by the parameter
Ratherm where

Ratherm =
gβR4

T A
κνRH

, (25)

and

A =
∆T
2π

∫ π

−π
f(θ) cos(θ)dθ. (26)

We have carried out the asymptotic analysis for the most unstable eigenvalue
of the thermo-siphon problem and have compared it with the results of the most
unstable eigenvalue computed using the finite element code. In MPSalsa we set
g = β = κ = ν = 1 and f(θ) = cos(θ). The mesh has N

4 by N
4 mesh divisions

around a cross-section and N + N
20 mesh divisions about the circumference of the

loop. The results are reported in Table 6. For the finest mesh, we have 185,220
unknowns and solve on 64 processors. We converge to the steady state easily using
a zero initial guess. The number of GMRES solves for each eigensolver iteration
is approximately 240. The time to compute eigenvalues on the finest mesh is 2671
seconds for Ra=30. We use Cayley Method B and set the Cayley parameters
σ = 10, µ = 80 and the Arnoldi size to 48. We see that once N is large enough,
we get excellent agreement between the asymptotic and numerical results. This is
a confirmation of both the numerics and the asymptotics.

TABLE 6
The first eigenvalue of flow in a thermo-siphon with RT = 1, RH =

10, Pr = 1:0, N
2

16 � (N + N
20) uniform mesh

N Ratherm = 30 Ratherm = 32.5 Ratherm = 35 Ratherm = 37.5

20 -0.758 -0.533 -0.316 -0.108
40 -0.389 -0.163 0.054 0.264
80 -0.303 -0.078 0.139 0.348
asymptotic -0.306 -0.082 0.133 0.341

6.2. The Onset of Convection Rolls in a Tilted Two Dimensional Box
In this subsection we discuss the onset of convection in a two dimensional tilted

slot. When the tilt angle is 0, this is the classical Rayleigh-Bénard problem with
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periodic boundary conditions at the vertical walls. When the tilt angle is 90 degrees,
this is the problem of a slot with one vertical wall cooled and the other vertical wall
heated. Periodic boundary conditions are imposed on the horizontal walls (so that
the problem can be reduced to a one dimensional eigenvalue problem that is once
again solved using the method of separation of variables). For any value of the tilt
angle or Rayleigh number there is a trivial solution where the flow is unidirectional,
going up the hot wall and down the cold wall. The temperature profile associated
with this base flow is the same as if there were no flow at all.

We consider the equations for a Boussinesq fluid in a two dimensional rectangular
box

0 ≤ x ≤ L, −H/2 ≤ z ≤ H/2

with the gravity vector inclined with an angle θ relative to the z axis:

eg = cos(θ)ez − sin(θ)ex.

Physically this arises from tilting the box, but it is mathematically convenient to
think of tilting the gravity vector.

We impose no-slip conditions on the walls with z = constant

u(x, z) = 0 for z = ±H/2

and Neumann boundary conditions on the temperature

T (x, z) = ∓∆T/2 for z = ±H/2.

On the walls with x = constant we impose periodic boundary conditions:

T (0, z) = T (L, z), u(0, z) = u(L, z), p(0, z) = p(L, z).

Assuming that we choose the reference temperature Tref in the Boussinesq equa-
tions to be zero, we always have the simple solution

T0(x, z) = −z∆T
H

(27a)

u0(x, z) = −gβ∆T sin(θ)
6νH

(

z3 − H2

4
z
)

(27b)

w0(x, z) = 0 (27c)

p0(x, z) = −ρgβ∆T cos(θ)
2H

z2. (27d)

Note that there is no net transport of mass across any plane x = constant and
that although the velocity does not vanish, the temperature profile is always the
same as the conduction temperature profile. When θ = 0 there is no flow, and we
get the classical Rayleigh-Bénard problem. When θ = π/2, we have the flow in a
slot that is heated on one vertical wall and cooled on the other.
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In Appendix D we show how to calculate the eigenvalues of the stability problem
associated with this simple solution using a one dimensional eigensolver.

In MPSalsa we set g = β = κ = ν = 1 and control the Rayleigh number with
∆T . The mesh has N divisions along the length L and 2N

3 along the height H. We
report our results in Table 7. For the finest mesh, we have 38,800 unknowns and
solve on 8 processors. We converge to the steady state for Ra = 7000 easily using
a zero initial guess, then use continuation steps of size 1000 to achieve the steady
state at Ra = 9000. The number of GMRES solves for each eigensolver iteration
is approximately 400. The time to compute eigenvalues for the finest mesh is 1904
seconds for Ra=7000 and θ = 80deg. We use Cayley Method B and set the Cayley
parameters σ = 10, µ = 100 and the Arnoldi size to 24. Note that the semi-
analytical results predict that the eigenvalues are real, but have multiplicity two.
The multiplicity of the eigenvalues arises because we are using periodic boundary
conditions, and any eigenvalue associated with the spatial dependence eikx is also an
eigenvalue of a mode with spatial dependence e−ikx. For some values of Rayleigh
number the results of the eigenvalue calculations show small residual imaginary
parts instead of multiple eigenvalues, but we claim that these imaginary parts are
small enough that they can be ignored.

TABLE 7
The first 4 eigenvalues of the tilted 2D box L = 3, H = 1, Pr =

1:0, N � 2N
3 uniform mesh .

Ra θ N λ0 λ1 λ2 λ3

7000 90
30 -9.883 + 0.007 i -9.883 - 0.007 i -12.231 -12.231
60 -9.875 + 0.017 i -9.875 - 0.017 i -12.244 -12.244
120 -9.871 + 0.001 i -9.871 - 0.001 i -12.269 -12.269
analytic -9.870 -9.870 -12.286 -12.286

9000 90
30 0.525 0.525 -9.879 -9.886
60 0.618 0.618 -9.863 -9.887
120 0.638 0.638 -9.857 -9.885
analytic 0.638 0.638 -9.870 -9.870

7000 80
30 -9.882 + 0.009 i -9.882 - 0.009 i -9.968 -9.968
60 -9.875 + 0.015 i -9.875 - 0.015 i -10.017 -10.017
120 -9.751 -10.050 + 0.011 i -10.050 - 0.011 i -10.586
analytic -9.870 -9.870 -10.100 -10.100

9000 80
30 2.422 2.422 -9.881 -9.883
60 2.483 2.483 -9.875 + .005 i -9.875 - .005 i
120 2.486 2.485 -9.871 + .027 i -9.871 - .027 i
analytic 2.464 2.464 -9.870 -9.870
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6.3. The Onset of Convection Rolls in a Tilted Three Dimensional
Box

In this subsection we discuss the onset of convection in a three dimensional box
that has been tilted so that the gravity vector still lies in one of the planes of
symmetry. This is the same as the previous problem, but we have added a third
dimension which we will call y. The boundary conditions in the third dimension are
like those of the classical Rayleigh-Bénard problem presented in the last section.
We are able to use separation of variables to compute modes that either have no
y dependence or no x dependence. When the tilt angle is small the most unstable
mode corresponds to rolls lining up with their axes aligned perpendicular to the
axis of tilt. When the tilt angle is large, the rolls line up with their axis parallel to
the tilt axis.

Once again we assume that the gravity vector is inclined at an angle θ to the z
axis:

eg = cos(θ)ez − sin(θ)ex.

We consider convection in a three dimensional box

0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, −H/2 ≤ z ≤ H/2.

We impose no-slip boundary conditions on the planes z = constant

u = 0 for z = ±H/2

and impose the temperature boundary conditions

T (x, y, z) = −∓∆T/2 for z = ±H/2.

On the walls with x = constant we impose periodic boundary conditions

T (0, y, z) = T (Lx, y, z), u(0, y, z) = u(Lx, y, z), p(0, y, z) = p(Lx, y, z).

On the walls with y = constant we impose the conditions

∂T
∂y

(x, y, z) = 0 for y = 0, Ly

v(x, y, z) = 0 for y = 0, Ly

∂u
∂y

(x, y, z) =
∂w
∂y

(x, y, z) =
∂T
∂y

(x, y, z) = 0 for y = 0, Ly.

We can use the method of separation of variables to find eigenvalues associated
with modes that have no x dependence or modes that have no y dependence. There
are modes that we cannot find using separation of variables; we indicate these in the
tables by “miss.” In MPSalsa we set g = β = κ = ν = 1 and control the Rayleigh
number with ∆T . The mesh has N divisions along the length L, N

3 along the
width W , and 2N

3 along the height H. The results for this problem are reported
in Table 8. For the finest mesh, we have 1,992,600 unknowns and solve on 128
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processors. We converge to the steady state for the lowest Rayleigh number using
a zero initial guess, then use continuation steps of size 1000 to achieve the steady
states for the higher Rayleigh numbers. The number of GMRES solves for each
eigensolver iteration is approximately 500. The time to compute eigenvalues on the
finest mesh is 5.7 hours for Ra=9000 and θ = 80 deg. We use Cayley Method B
and set the Cayley parameters σ = 10, µ = 100 and the Arnoldi size to 24.

TABLE 8
The first 4 eigenvalues of the tilted 3D box with L = 3, H =

1 , Pr = 1:0, N � N
3 � 2N

3 uniform mesh.

Ra θ N λ0 λ1 λ2 λ3

1500 10
30 -1.709 -2.919 -2.919 -3.362
60 -1.791 -2.995 -2.995 -3.443
120 -1.813 -3.017 -3.017 -3.464
analytic -1.822 miss miss -3.472

2000 10
30 2.092 1.251 1.251 -0.821
60 1.981 1.150 1.150 -0.794
120 1.952 1.123 1.123 -0.781
analytic 1.939 miss miss -0.777

8000 80
30 -2.471 -3.635 -3.636 -9.888 ± 0.191i
60 -2.503 -3.492 -3.494 -9.839
120 -2.520 -3.505 -3.507 -9.871 ± 0.084i
analytic -2.550 -3.534 -3.534 -9.870

9000 80
30 2.272 + 0.001i 2.272 - 0.001i -1.049 -9.751
60 2.480 2.479 -1.081 -9.875
120 2.487 2.485 -1.100 -9.813
analytic 2.464 2.464 -1.132 -9.870

7. ADVECTIVELY DOMINATED FLOWS
In this section we present two problems where the flow is advectively dominated.

The stability of these flows cannot be analyzed using separation of variables; we ver-
ify the accuracy of our results through comparison to previous numerical solutions
and convergence as we refine the mesh. In both of these problems the imaginary
parts of the eigenvalues are large, and we have slow convergence towards the real
parts of the most unstable eigenvalue.

We believe that these problems demonstrate the limitations of what can robustly
be done by applying a general purpose finite element code to a fluid stability cal-
culation. However, we note that the difficulties are with the resolution of the
discretization and not in solving the eigenvalue problem. We emphasize that a
transient solution is not any more reliable than the eigenvalue computations. We
also note that both of these problems are two dimensional; if we were trying to
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achieve the same resolution on a three dimensional problem, we would have billions
of unknowns.

7.1. The Onset of Oscillatory Convection in a Cavity
In this section we consider the problem of convection in a two dimensional vertical

cavity of width W and height H

−W/2 ≤ x ≤ W/2

−H/2 ≤ z ≤ H/2.

This problem is almost identical to one studied by Paolucci and Chenoweth [28].
More recent work on this problem can also be found: see [17, 43, 15, 19, 44, 29].
In [28] they found oscillatory solutions using time dependent calculations. Here we
will use eigenvalue calculations to predict the onset of oscillations.

The left vertical wall is held at a constant temperature −∆T/2, and the right
vertical wall is held at the temperature ∆T/2:

T (±W/2, z) = ±∆T/2

We impose no flux boundary conditions at the horizontal walls

∂T (x,±H/2)
∂z

= 0

and no-slip boundary conditions on all walls

u = 0 on all walls.

Paolucci and Chenoweth carried out their calculations with Pr = .71. Our
calculations are carried out with ν = g = β = 1, and κ = 1/Pr = 1.0/.71. The
Rayleigh number is controlled using Ra = ∆TPr. We use H = 2 and W = 1.

In [28] they show that as the Rayleigh number is increased (based on the ∆T
and W ) boundary layers develop on both vertical walls, and “hydraulic jumps”
develop at the upper left and lower right corners. The “hydraulic jump” in the
upper left hand corner is where the flow moving up the left hand wall turns the
corner and flows over a region of more dense fluid near the upper wall. A similar
situation exists in the lower right hand corner. For 1/2 < H/W < 3 they found
that these “hydraulic jumps” would start oscillating at a Rayleigh number lower
than that necessary to get the thermal boundary layers to go unstable. (Their
explanation of the instability in terms of these “hydraulic jumps” is in dispute; see
[17], for example.) This section is devoted to analyzing the onset of this oscillatory
behavior using eigenvalue calculations.

Although Paolucci and Chenoweth did not make the Boussinesq approximation
in their calculations, they purposely used conditions that are well approximated
by the Boussinesq approximation. In particular, ∆T/TAV = .01 where ∆T is
the difference between the wall temperatures and TAV is the average of the wall
temperatures. When A = H/W = 2 they found an instability at a Rayleigh number
of approximately Ra = 3× 107 with a dimensionless frequency of f = 173.2.
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Paolucci and Chenoweth use a dimensionless time based on the thermal conduc-
tivity, whereas we we use a dimensionless time based on the kinematic viscosity.
Thus, we need to divide their frequencies by the Prandtl number to compare them
to our frequencies. If fPC are the frequencies reported in [28], then to get our
frequencies ωours we use

ωours = fPC
2π
.71

We use grids of 60×60, 120×120, 240×240 and 480×480. The spacing between
the grid points increases exponentially as we move away from the walls, with the
grids in the middle of the box having grid spacings about 20 times as large as the
grids near the walls.

For the finest mesh, we have 925,444 unknowns and solve on 64 processors. It is
somewhat difficult to achieve convergence of the steady state solution; we rely on
continuation to find the steady state at the desired Rayleigh numbers. The number
of GMRES solves for each eigensolver iteration is approximately 400. The time to
compute eigenvalues for the finest mesh is 7 hours for Ra = 3.0 × 107. We use
Cayley Method A and set the Cayley parameters σ = 2000, µ = −2000 and the
Arnoldi size to 160.

Table 9 shows the eigenvalues for the 240× 240 grid and how they compare with
the results of Paolucci and Chenoweth. Paolucci and Chenoweth only performed
calculations at Rayleigh numbers of 3×107 and 2×107 for A = 2.0. The frequency
they report at Ra = 3× 107 is in excellent agreement with the frequency predicted
by our eigenvalue calculation. However when Ra = 2×107 the frequency they report
agrees with what we calculate to be the third most unstable mode. Furthermore,
they report the flow as being stable, while the eigenvalue calculations report that
the flow is unstable. Since we are close to the point of instability it is possible that
their calculations are just slightly under-resolved.

In order to see how the steady state solution is converging with mesh refinement
we have included Table 10. This table shows the maximum value of the radial
velocity and its r and z location. We are clearly getting convergence, but the con-
vergence with mesh is somewhat slow and clearly is no better than the convergence
with mesh of the eigenvalues.

TABLE 9
The Eigenvalues for the convection in a cavity problem with mesh

N = 240. Note that f1 & f2 are the frequencies reported
by [28] and are only available for comparison for the

two Rayleigh numbers 3:0� 107 and 2:0� 107

Ra(107) ∆T (107) f1 f2 λ0 λ1 λ2

3.0 4.225 1531. 468.2 ± 1546i 463.3 ± 1549i -101.7 ± 4044i
2.75 3.873 383.7 ± 1488i 377.8 ± 1491i -97.80 ± 3875i
2.5 3.521 283.1 ± 1424i 275.9 ± 1426i -94.31 ± 3695i
2.25 3.169 164.7 ± 1352i 155.9 ± 1356i -92.82 ± 3500i
2.0 2.817 3261. 35.86 ± 1262i 20.13 ± 1278i -95.87 ± 3290i
1.5 2.113 -237.8 ± 982.5i -156.3 ± 1035i -199.7 ± 3148i
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TABLE 10
Eigenvalues and maximum computed values for the radial velocity in

the problem of the onset of oscillatory convection in a heated
slot with Ra = 3:0� 107 with varying mesh resolution.

N λ0 λ1 λ2 r velocity r-coord z-coord

60 460.0 ± 1423i 457.2 ± 1421i -127.9 ± 3951i 1199.3 0.1232 0.9629
120 475.5 ± 1540i 471.0 ± 1543i -104.1 ± 4038i 1130.2 0.1203 0.9644
240 468.2 ± 1546i 463.3 ± 1549i -101.7 ± 4044i 1128.9 0.1224 0.9674
480 467.7 ± 1547i 462.4 ± 1560i -102.0 ± 4045i 1130.6 0.1216 0.9667

7.2. Comments on the symmetry and near-degeneracy of the
eigenvalues

One interesting feature of these eigenvalue calculations is that we have two com-
plex conjugate pairs of eigenvalues that are nearly identical. These eigenvalues are
close enough that one might expect that they should be the same; from the sym-
metry of the problem we can argue that they are not the same. If the right vertical
wall is held at a temperature that is the negative of the left vertical wall, then the
governing equations are invariant under the following symmetry transformations:

Rz(x) =





−T (−x)
−u(−x)
p(−x)





where we are representing our solution in the shorthand form

z(x) =





T (x)
u(x)
p(x)



 .

If the functions (T (x),u(x), p(x)) satisfy the equations of motion and boundary
conditions, then so do the functions (−T (−x),−u(−x), p(−x)), or put another
way, if z(x) is a solution to our equations, then so is Rz(x). However, it is not
necessary that solutions to our equations satisfy Rz(x) = z(x). Symmetry can only
be broken through a bifurcation: a solution that is initially symmetric will stay
symmetric as we vary a parameter unless we encounter a bifurcation point.

We are analyzing the stability of symmetric solutions; for this reason, all eigen-
functions will either be symmetric or anti-symmetric: any simple eigenfunction will
either satisfy Rφ(x) = φ(x), or Rφ(x) = −φ(x).

We conclude that when our system goes unstable, the “hydraulic jumps” will
either oscillate in a symmetric manner, or in an anti-symmetric manner. Physically
we expect that if the walls are well separated, then the jump on the left should
be able to oscillate independently of the jump on the right. In order for this to
be so, we would have to be able to construct eigenfunctions where the jump on
the left oscillates but the one on the right does not. The only way to do this is if
we have multiple eigenvalues, with one eigenvector being symmetric, and the other
one being anti-symmetric. This is not quite what occurs because the two jumps
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do know a little bit about each other, but we almost get this. Hence we have two
eigenvalues that are almost identical to each other.

7.3. The Stability of a Heated Plume
In this section we consider the problem of convection in a cylindrical container

that has a hot spot on the bottom of the container. This problem was previously
considered by Torrance and Rockett [36], who did a numerical and experimental
study of the flow.

Let R be the radius of the container, H be the height, and Rs be the radius of
the hot spot.

We define the aspect ratio as

ε =
H
R

and the spot aspect ratio as

εs =
Rs

R
.

The problem of interest has no-slip boundary conditions on all walls

u = 0 on all walls

and specifies that the temperature is Tref on all walls except on the hot spot, where
it is Tref + ∆T :

T (r, 0) = Tref + ∆T for r < Rs

T (r, 0) = Tref for Rs < r < R

T (r,H) = Tref for 0 < r < R

T (R, z) = Tref for 0 < z < H.

For compatibility with the previous work, we present results in terms of the
Grashoff number, defined as

Gr = RaPr

As in [36] we use ε = H/R = 1, and εs = Rs/R = .1, and Pr = 1
1.4 . In our

calculations we set R = H = 1, Rs = .1, ν = .01, κ = .014, g = 100 and β = 1. We
then control the Grashoff number using Gr = ∆T × 106.

In [36] they state that experimentally the flow was found to turbulent when

Gr > 1.2× 109.

Their numerical calculations assumed axisymmetry so were stable past the point of
experimentally observed transition. They found that oscillations started occurring
in the axisymmetric flows for Gr somewhere between 4× 109 and 4× 1010.

Our calculations indicate that there is an unstable eigenvalue for Gr > 1.0×109.
Our calculations were carried out using 2N points in the vertical direction and
N in the radial direction. In Table 11 we present the results for the most unsta-
ble eigenvalue with Gr = 1.0 × 109 and different values of N ; we used values of
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N = 40, 80, 160, 320 and 640. The imaginary part of the most unstable eigenvalue
appears to be converging quite rapidly as we refine the mesh. However, the con-
vergence of the real part is somewhat disappointing. Table 11 shows that the slow
convergence of the eigenvalues is a result of the slow convergence of the steady state
as one refines the mesh.

For the finest mesh we have 3,284,484 unknowns and solve on 512 processors. It
is somewhat difficult to achieve convergence of the steady state solution; we rely on
continuation to find the steady state at the desired Grashoff numbers. The number
of GMRES solves for each eigensolver iteration is approximately 320. The time to
compute eigenvalues for the finest mesh is 2.9 hours for Gr = 1.0 × 109. We use
Cayley Method A and set the Cayley parameters σ = 1200, µ = −1200 and the
Arnoldi size to 160.

TABLE 11
The real and imaginary parts of the most unstable eigenvalue and

maximum computed values for the radial velocity for the
problem of a confined heated plume for Gr = 1:� 109.

N Re(λ0) Im(λ0) r velocity r-coord z-coord

40 155.1 ± 616.6 96.952 0.075 0.987
80 -4.898 ± 883.7 143.09 0.050 0.994
160 -14.24 ± 1109. 180.53 0.037 0.997
320 22.55 ± 1128. 163.52 0.037 0.997
640 36.70 ± 1130. 163.69 0.033 0.997

8. THE OSCILLATORY INSTABILITY OF CONVECTION ROLLS

In this section we present the results for a secondary bifurcation in the Rayleigh-
Bénard problem. In particular we compute the convection rolls arising from the first
bifurcation in the Rayleigh-Bénard problem; we then analyze the stability of these
rolls. We have chosen our parameters so that we get an oscillatory instability. The
stability of the rolls has been considered both experimentally [40] and numerically
[2, 5, 35, 27, 34, 9].

In their paper Busse and Clever [2] numerically analyzed the stability of the
convection rolls in the absence of any side walls. Their equilibrium solution is
a two dimensional solution periodic in the direction perpendicular to the axis of
the rolls. They analyze the stability of this solution by Fourier transforming the
disturbances and looking for the most unstable wavelength. Their results show
that as the Prandtl number goes to zero, the rolls have an oscillatory instability
at a Rayleigh number close to the critical Rayleigh number of the first bifurcation.
Although their results are in qualitative agreement with experiments, quantitatively
their results predict the bifurcation occurs closer to the original bifurcation than
the experiments do. They argue that this is most likely a result of ignoring the side
walls.
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We compute the stability of the convection rolls including the effect of the side
walls. We assume that the flow takes place in a three dimensional box

0 ≤ z ≤ H, 0 ≤ x ≤ L, 0 ≤ y ≤ W.

In our calculations we choose H = 1, L = W = 5. We have tried to choose the
aspect ratios L/H and W/H large enough that the effect of the side walls is not
overwhelming, but small enough that we can resolve the rolls with a reasonable
number of unknowns.

We prescribe the temperature on the horizontal walls

T (x, y, 0) = Tref + ∆T, T (x, y,H) = Tref ,

and no flux boundary conditions on all side walls

∂T
∂x

(0, y, z) =
∂T
∂x

(L, y, z) =
∂T
∂y

(x, 0, z) =
∂T
∂y

(x,W, z) = 0.

We prescribe no-slip boundary conditions at the horizontal walls and at the walls
x = constant:

u(x, y, 0) = u(x, y, H) = u(0, y, z) = u(L, y, z) = 0.

At the walls y = constant we prescribe no normal velocity, and no tangential stress:

v(x, 0, z) = v(x,W, z) = 0

∂u
∂y

(x, 0, z) =
∂u
∂y

(x, W, z) =
∂w
∂y

(x, 0, z) =
∂w
∂y

(x,W, z).

We use a Prandtl number of Pr = .01. We achieve our dimensionless parameters
using g = β = ν = 1, κ = 1/Pr = 100, and Ra = ∆T/100. Our mesh has N
divisions in the L and W directions and 2N

5 in the H direction. We report our
results in Table 12. In Table 13 we report the maximum x-velocity and z-velocity
and the z-coordinates at which they occur. Note that we see quadratic convergence
in the velocities and their coordinates (taking into account the symmetry of the
flow), indicating our mesh is fine enough to resolve the flow.

For the finest mesh, we have 16,362,405 unknowns and solve on 2048 processors.
It is difficult to converge to the steady state for this problem for the fine mesh; we
rely on continuation and mesh sequencing — that is, we use our solution from the
coarser mesh and interpolate it to a solution on the finer mesh as an initial guess.
The number of GMRES solves for each eigensolver iteration is approximately 375.
The time to compute eigenvalues for the finest mesh is 9.5 hours for Ra=1850.
We use Cayley Method A and set the Cayley parameters σ = 60, µ = −60 and
the Arnoldi size to 60. Here we note that choosing the Cayley parameters so that
0 < σ < µ (Cayley Method B) is unreliable in that we do not converge to the
complex conjugate pair that identifies the oscillatory instability; for example using
σ = 100 and µ = 1000 does not find this instability.

9. NUMERICAL ISSUES
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TABLE 12
The first 4 eigenvalues of the Convection Rolls with L = 5, W =

5, H = 1, Pr = :01, N �N � 2N
5 uniform mesh.

Ra N λ0 λ1 λ2 λ3

1850
50 -1.514 -3.725 -3.873 -4.222
100 -3.059 -3.109 -3.810 -4.198
200 -2.961 -3.360 -3.743 -4.111 ± 52.91 i

1900
50 -1.552 -3.064 -3.414 ± 59.82 i -4.934
100 -1.258 ± 71.84 i -3.116 ± 85.87 i -3.580 ± 54.86 i -3.796
200 -0.798 ± 74.30 i -2.644 ± 88.80 i -3.240 ± 56.74 i -3.582

1950
50 -1.322 ± 74.34 i -1.494 -2.488 -3.030 ± 88.94 i
100 1.960 ± 94.33 i 0.541 ± 113.0 i -1.38 ± 71.54 i -4.53
200 2.744 ± 99.06 i 1.428 ± 118.67 i -0.814 ± 75.09 i -4.236

2000
50 0.748 ± 89.41 i -0.659 ± 107.1 i -1.419 -2.139
100 5.202 ± 119.1 i 4.662 ± 143.0 i 0.7943 ± 89.71 i -1.806 ± 129.3 i

TABLE 13
Maximum computed values for variables in the Convection Rolls

with L = 5, W = 5, H = 1, Pr = :01 .

Ra N x vel z-coord y vel z-coord

1850
50 50.7 0.8 44.9 0.55
100 57.8 0.175 50.4 0.525
200 59.1 0.8125 51.3 0.5125

1900
50 66.3 0.8 58.1 0.5
100 80.0 .175 70.3 0.525
200 82.9 0.825 73.0 0.5125

1950
50 82.4 0.8 73.5 0.5
100 104.5 0.175 93.5 0.5
200 109.7 0.175 98.5 0.5

2000
50 98.8 0.8 89.7 0.5
100 130.6 0.175 119.2 0.5

Because we use parallel preconditioned Krylov iterative methods for the eigen-
value problem and resulting linear sets of equations, our results are obtained by
specifying the values of certain adjustable parameters. For example, we needed
to specify the Cayley parameters σ and µ and the size of the Arnoldi space. We
briefly review our verification procedures used for all the numerical experiments;
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the reader is referred to [21] for further information. Our main emphasis in this
section is to illustrate how sensitive our results are to the Cayley parameters.

Denote by λc and zc the approximations to an eigenvalue and eigenvector of (7).
We verify these approximations by computing the norm of the residual

||Jzc − λcBzc||
||Bzc||

, (28)

and the Rayleigh quotient error

|λc −
zH

c Jzc

zH
c Bzc

|, (29)

where ||·|| is the Euclidean norm of a vector and zH denotes the conjugate transpose
of a vector. These errors only vanish when λc and zc are an eigenpair for (7). Note
that these measures are independent of the scaling of zc and ARPACK scales the
approximate eigenvector so that ‖z‖ = 1.

We now discuss the Cayley parameters and the size m of the Arnoldi space
used by ARPACK. These two parameters are related because if one chooses the
Cayley parameters poorly, a large Arnoldi space will be required to obtain accurate
eigenvalues. Our experience dictates that it is best to choose the Cayley parameters
so that they are on the order of magnitude of the imaginary part of the most
unstable eigenvalue. We believe that this is a reasonable assumption because the
user typically has some idea of the location of the imaginary part of the most
unstable eigenvalue. For example, this information is available if we are solving
a problem that is a small variation of a problem that has already been solved, or
if we have access to related experimental or computational results. However, this
is a drawback because some idea of the size of the imaginary portion of the most
unstable eigenvalue is required. Our experience is that for some of the problems, our
estimate could be off by several orders of magnitude and not affect the computation.
On other problems we observed degraded performance when we were off by a factor
of two in choosing the Cayley parameters. None of the problems we solved show
extreme sensitivity to the choice of the Cayley parameters.

We use the problems of oscillatory convection in a slot and the stability of a
heated plume as illustrations of the effect of these parameters. On physical grounds
it is difficult to predict that one of these problems would be more sensitive to our
choice of Cayley parameters than the other. However, the problem of the onset of
convection in a slot is considerably less sensitive to our choice of Cayley parameters
than the problem of the instability of the plume.

Table 14 shows the errors in the most unstable eigenvalue of the onset of con-
vection in a heated slot as a function of the Cayley parameters and the size of the
Arnoldi space. These calculations were accomplished with a 120 × 120 mesh, and
a Rayleigh number of 1.5× 107. We see that changing the Cayley parameters from
±1000 to ±250 does not significantly degrade the performance of the algorithm.
By the time the Cayley parameters are ±50 we are seeing some degradation in the
algorithm, but we are still getting quite good convergence after 160 iterations.

Table 15 shows the same results for the problem of the stability of a heated
plume. Here we are using the 160 × 320 grid with a Grashoff number of 1 × 109.
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The results for an Arnoldi space of 80, and Cayley parameters of ±250 are clearly
inferior to those for the same size Arnoldi space but Cayley parameters of ±1000.

The accuracy of all of these calculations is limited by the accuracy to which we
solve our linear systems. For example, in Table 15 we do not get appreciably better
results by using an Arnoldi space of size 160 instead of 80. A discussion of the
effect of our linear algebra tolerances on the eigenvalues is given in [21].

TABLE 14
The effect of Arnoldi size and Cayley parameters on the problem

of convection in a heated slot. These results are for the
most unstable eigenvalue at Ra = 1:5 � 107, and

a grid of 120� 120.

σ = −µ Arnoldi Size Eigenvalue (normalized by 10−2) Direct Residual Rayleigh Quotient

50
20 -2.022 ± 10.30 i 5.351 ×101 2.167
40 -1.429 ± 10.43 i 7.956 6.270 ×10−1

80 -1.411 ± 10.40 i 1.252×10−3 4.199 ×10−5

160 -1.411 ± 10.40 i 1.252 ×10−3 4.199 ×10−5

125
20 -2.132 ± 10.27 i 5.193 ×101 5.888
40 -1.417 ± 10.40 i 5.689 2.920 ×10−1

80 -1.411 ± 10.40 i 5.689 ×10−4 3.240 ×10−5

160 -1.411 ± 10.40 i 5.689 ×10−4 3.240 ×10−5

250
20 -2.031 ± 10.31 i 1.496 ×102 1.095 ×101

40 -1.412 ± 10.40 i 2.513 8.351 ×10−2

80 -1.411 ± 10.40 i 2.438 ×10−4 2.871 ×10−6

160 -1.411 ± 10.40 i 2.438 ×10−4 2.871 ×10−6

500
20 -1.259 ± 10.83 i 3.125 ×102 2.290 ×101

40 -1.413 ± 10.40 i 1.280 7.320 ×10−2

80 -1.411 ± 10.40 i 1.345 ×10−4 1.484 ×10−5

160 -1.411 ± 10.40 i 1.346 ×10−4 1.484 ×10−5

1000
20 -1.225 ± 11.55 i 3.829 ×102 3.558 ×101

40 -1.413 ± 10.40 i 2.842 1.259 ×10−1

80 -1.411 ± 10.40 i 8.048 ×10−5 9.161 ×10−6

160 -1.411 ± 10.40 i 8.048 ×10−5 9.161 ×10−6

2000
20 -2.282 ± 10.34 i 1.352 ×102 8.241
40 -1.377 ± 10.32 i 3.357 ×101 1.865
80 -1.411 ± 10.40 i 2.484 ×10−3 7.816 ×10−5

160 -1.411 ± 10.40 i 6.275 ×10−5 6.018 ×10−6

4000
20 -1.875 ± 10.08 i 4.221 ×102 1.241 ×101

40 -2.033 ± 10.01 i 8.613 ×101 3.635
80 -1.396 ± 10.39 i 5.660 1.513 ×10−1

160 -1.411 ± 10.40 i 6.500 ×10−5 7.915 ×10−6
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TABLE 15
The effect of Arnoldi size and Cayley parameters on the problem

of stability of a heated plume. These results are for the
most unstable eigenvalue at Gr = 1: � 109, and

for the 160� 320 grid.

σ = −µ Arnoldi Size Eigenvalue (normalized by 10−1) Direct Residual Rayleigh Quotient

250
20 14.43 ± 112.1 i 1.078 ×103 7.801 ×102

40 -0.3819 ± 111.3 i 9.870 ×102 4.349 ×102

80 -1.525 ± 110.9 i 64.57 3.614 ×10−1

160 -1.425 ± 111.0 i 1.009 ×10−2 2.330 ×10−4

500
20 6.043 ± 109.8 i 9.801 ×102 2.678 ×102

40 -1.105 ± 110.1 i 4.317 ×102 1.733 ×101

80 -1.425 ± 110.9 i 3.090 ×10−1 6.630 ×10−4

160 -1.425 ± 111.0 i 3.400 ×10−3 1.232 ×10−4

1000
20 0.5203 ± 112.8 i 8.773 ×102 8.723 ×101

40 -1.354 ± 110.8 i 73.40 4.458 ×10−1

80 -1.425 ± 111.0 i 1.750 ×10−2 3.309 ×10−4

160 -1.425 ± 111.0 i 3.373 ×10−3 3.231 ×10−4

2000
20 5.136 ± 116.7 i 6.654 ×102 3.066 ×101

40 -1.824 ± 111.0 i 1.245 ×102 2.779
80 -1.424 ± 111.0 i 1.492 ×10−1 4.795 ×10−4

160 -1.425 ± 111.0 i 1.468 ×10−3 6.247 ×10−5

4000
20 1.332 ± 156.8 i 1.508 ×103 3.168 ×102

40 2.827 ± 106.8 i 6.403 ×102 19.14
80 -1.376 ± 110.9 i 11.03 5.097 ×10−2

160 -1.425 ± 111.0 i 1.428 ×10−3 1.037 ×10−4

10. CONCLUSIONS
We have demonstrated both the capabilities and the limitations of using a gen-

eral purpose finite element code and eigensolver for fluid stability calculations. We
validated and verified this approach on a wide variety of thermal convection prob-
lems ranging from the Classical Rayleigh-Bénard problem to the onset of oscillatory
convection in roll patterns, and the instability of a heated plume. Due to the size
of the problems involved it was necessary to use iterative methods for the linear al-
gebraic calculations. The largest problem we solved had over 16 million unknowns.
We believe that the problems presented are impressive because of the three dimen-
sional problems and the highly advective problems. Some of these problems were
chosen to push the limits of the techniques presented in this paper. None of these
problems indicated that the techniques had reached any inherent limitation.

We carefully analyzed our results by starting with relatively simple problems that
can be compared to semi-analytical results. The code was shown to give excellent
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agreement with the semi-analytical results. We have also presented results where
no semi-analytical results are available but we validated against existing results
attained by traditional transient based methods and verified by examining the rate
of convergence of the discrete eigenvalues as the mesh was refined.

Our results show that the accuracy of the calculations deteriorates as the flow
is advectively dominated. However, our results demonstrate that this is not a
problem with the eigensolver but with whether the discretization is sufficiently
resolved. Thus, the use of transient based methods would encounter the same
difficulties. We maintain that our results are as reliable as those obtained using
transient integration, but that our results are more efficiently computed because
we use a Krylov subspace method instead of the power method, and because we
use a frozen Jacobian. We believe that our use of preconditioned Krylov iterative
methods were successful because of the high quality and robust implementation of
these algorithms, ARPACK, and Aztec.

APPENDIX A

Eigenvalues for the Classical and Rotating Rayleigh-Bénard Problem
In this appendix we discuss how we use separation of variables to reduce the two

and three dimensional Rayleigh-Bénard eigenvalue problems to one dimensional
eigenvalue problems that can be solved using a spectral collocation method.

A.1. THE TWO DIMENSIONAL RAYLEIGH-BÉNARD PROBLEM
We present the analysis of the stability of the no-flow solution to the two di-

mensional Rayleigh-Bénard problem in a box (Section 5.1). The stability of this
solution is determined by the eigenvalue problem

σu +
1
ρ
∇p = ν∇2u + gβTez (A.1a)

σT − w
∆T
H

= κ∇2T (A.1b)

∇ · u = 0 (A.1c)

u(x, 0) = u(x, H) = 0 (A.1a)

T (x, 0) = T (x,H) = 0 (A.1b)

∂
∂x

T (0, z) =
∂
∂x

T (L, z) = 0 (A.2)

u(0, z) = u(L, z) = 0 (A.3)

∂
∂x

w(0, z) =
∂
∂x

w(L, z) = 0. (A.4)

This eigenvalue problem can be solved using separation of variables. We assume
our solutions are of the form

σ =
κ

H2 σ̂,
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u(x, z) = sin(k̂x/H)
κ
H

û(ẑ)

w(x, z) = cos(k̂x/H)
κ
H

ŵ(ẑ)

T (x, z) = cos(k̂x/H)∆T T̂ (ẑ)

p(x, z) = cos(k̂x/H)
ρκ2

H2 p̂(ẑ)

ẑ = z/H.

Solutions of this form will satisfy the vertical boundary conditions provided k̂ takes
on the discrete set of values

k̂m =
πmH

L
, m = 0,±1,±2,±3...

In order to satisfy our two dimensional eigenvalue problem it is now only necessary
that the functions (û, ŵ, T̂ , p̂) satisfy the one dimensional eigenvalue problem

σ̂û− k̂mp̂ = Pr(û′′ − k̂2
mû) (A.5)

σ̂ŵ + p̂′ = Pr(ŵ′′ − k̂2
mŵ) + RaPrT (A.6)

σ̂T̂ − ŵ = T̂ ′′ − k̂2
mT̂ (A.7)

−k̂mû + ŵ′ = 0 (A.8)

where the primes refer to differentiation with respect to ẑ ,

Ra =
gβH3∆T

κν

is the dimensionless Rayleigh number and

Pr =
ν
κ

is the dimensionless Prandtl number, and the boundary conditions are

û(0) = û(1) = ŵ(0) = ŵ(1) = T̂ (0) = T̂ (1) = 0. (A.9)

In order to get the eigenvalues with the largest real part of the two dimensional
eigenvalue problem, we need to compute the eigenvalues for m = 0, 1, 2, . . . and
select the largest eigenvalues from these. Assuming we only want the first four
largest eigenvalues, it is only necessary to compute the eigenvalues for small values
of m.

We will not discuss the details of the spectral calculation, but state that these
calculations were carried out with extreme precision and for our purposes can be
considered to give exact answers.
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A.2. THE THREE DIMENSIONAL RAYLEIGH-BÉNARD
PROBLEM

We present the analysis of the stability of the no-flow solution to the three di-
mensional Rayleigh-Bénard problem in a box (Section 5.2). As in the case of the
two dimensional Rayleigh-Bénard problem, the stability of this solution is deter-
mined by the equations A.1a–A.1c. Once again the boundary conditions on the
horizontal walls require that both the velocity and the temperature vanish (Eqs.
A.1a–A.1b). The boundary conditions on the vertical walls require that there is no
normal velocity, no tangential stress, and no flux of heat:

u(x, y, z) =
∂v(x, y, z)

∂x
=

∂w(x, y, z)
∂x

=
∂T (x, y, z)

∂x
= 0 for x = 0, L (A.10)

v(x, y, z) =
∂u(x, y, z)

∂y
=

∂w(x, y, z)
∂y

=
∂T (x, y, z)

∂y
= 0 for y = 0,W. (A.11)

To solve the eigenvalue problem, we assume solutions of the form

σ =
κ

H2 σ̂

u(x, y, z) = sin(k̂1x/H) cos(k̂2y/H)
κ
H

û(ẑ)

v(x, y, z) = cos(k̂1x/H) sin(k̂2y/H)
κ
H

v̂(ẑ)

w(x, y, z) = cos(k̂1x/H) cos(k̂2y/H)
κ
H

ŵ(tz)

T (x, y, z) = cos(k̂1x/H) cos(k̂2y/H)∆T T̂ (ẑ)

p(x, y, z) = cos(k̂1x/H) cos(k̂2y/H)
ρκ2

H2 p̂(ẑ)

ẑ = z/H.

Solutions of this form will be eigenvectors of our stability equations provided

k̂1 = mπH/L m = 0,±1,±2,±3 . . .

k̂2 = nπH/W m = 0,±1,±2,±3 . . .

and provided the functions û,v̂, ŵ, p̂, and T̂ satisfy the one dimensional eigenvalue
problem

σ̂û− k̂1p̂ = Pr(û′′ − k̂2û) (A.12)

σ̂v̂ − k̂2p̂ = Pr(v̂′′ − k̂2v̂) (A.13)

σ̂ŵ + p̂′ = Pr(ŵ′′ − k̂2ŵ) + RaPrT̂ (A.14)
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σ̂T̂ − ŵ = T̂ ′′ − k̂2T̂ (A.15)

−k̂1û− k̂2v̂ + ŵ′ = 0 (A.16)

k̂2 = k̂2
1 + k̂2

2

along with the boundary conditions,

û(z) = v̂(z) = ŵ(z) = 0 for z = 0, 1 (A.17)

and

T̂ (z) = 0 for z = 0, 1. (A.18)

In order to compute the largest eigenvalues of the three dimensional problem we
need to compute the largest eigenvalues for m and n; since we are only interested in
the 4 largest eigenvalues we only need to use small values of m and n. Once again,
the one dimensional eigenvalue problem was solved using a spectral collocation
method and for our purposes can be considered to give exact answers.

A.3. EIGENVALUES FOR THE ROTATING RAYLEIGH-BÉNARD
PROBLEM

Here we show how to reduce the eigenvalues for the rotating Rayleigh-Bénard
problem (Section 5.3) to a one dimensional eigenvalue problem. The stability (as-
suming axisymmetric disturbances) of the state of uniform rotation is governed by
the eigenvalue problem

σu− 2Ωv +
1
ρ

∂p
∂r

= ν∇2u

σv + 2Ωu = ν∇2v

σw +
1
ρ

∂p
∂z

= ν∇2w + gβT

σT − ∆T
H

w = κ∇2T

1
r

∂
∂r

(ru) +
∂w
∂z

= 0.

We also impose the boundary conditions

u(r, z) = v(r, z) =
∂w(r, z)

∂r
=

∂T (r, z)
∂r

= 0 for r = R

and

u(r, z) = T (r, z) = 0 for z = 0, H.

We solve this eigenvalue problem using separation of variables. To use separation
of variables we assume that our eigenfunctions have the form

σ =
κ

H2 σ̂
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u(r, z) = û(ẑ)
κ
H

J1(k̂r/H)

v(r, z) = v̂(ẑ)
κ
H

J1(k̂r/H)

w(r, z) = ŵ(ẑ)
κ
H

J0(k̂r/H)

T (r, z) = T̂ (ẑ)∆TJ0(k̂r/H)

p(r, z) = p̂(ẑ)
ρκ2

H2 J0(k̂r/H)

ẑ = z/H

where k̂ is restricted to

k̂m =
γmH

R

where γm is the mth zero of the function J1(z). Since J ′0(z) = −J1(z), this re-
striction on k̂ guarantees that the boundary conditions on the side walls will be
satisfied. In addition, the functions û, v̂, ŵ, T̂ and p̂ must satisfy the one dimen-
sional eigenvalue problem:

σ̂û− k̂p̂ = Pr(û′′ − k̂2û) + Prε2
√

Tav̂

σ̂v̂ = Pr(v̂′′ − k̂2v̂)− Prε2
√

Taû

σ̂ŵ + p̂′ = Pr(ŵ′′ − k̂2ŵ) + RaPrT̂

σ̂T̂ − ŵ = T̂ ′′ − k̂2T̂

−k̂û + ŵ′ = 0

along with the boundary conditions

û(z) = v̂(z) = ŵ(z) = T̂ (z) = 0 for ẑ = 0,H

where

Ra =
gβ∆TH3

κν

Ta =
4Ω2R4

ν2

and

ε =
H
R

.

Once again this problem was solved using a spectral collocation code, and we
found the largest eigenvalues from among the modes given by m = 0,±1,±2, . . ..



LARGE SCALE EIGENVALUE CALCULATIONS 39

APPENDIX B

Eigenvalues for Convection In a Porous Medium
In this appendix we show how to analyze the stability of the steady state solution

T = Tref −∆T (z −H)/H

uav = 0

to the equations for convection in a porous medium.
In the Hele-Shaw approximation, the stability of this solution is governed by the

eigenvalues σ of the eigensystem

∇2p = ρgβ
∂T
∂z

σT − wav
∆T
H

= κ∇2T

uav =
k
µ

(∇p− ρgβTez)

along with the boundary conditions

T (x, 0) = T (x,H) = 0

∂T
∂x

(x, z) = 0 for x = 0, L

∇ · p = 0 on all boundaries.

We can analyze this eigenvalue problem by assuming that the eigenvalues and
eigenfunctions have the form

σ =
κ

H2 σ̂

p(x, z) = p̂(ẑ)ρgβ∆TH cos(k̂mx/H)

T (x, z) = T̂ (ẑ)∆T cos(k̂mx/H)

ẑ = z/H

where k̂m must take on the discrete values

k̂m =
mπH

L

and p̂ and T̂ satisfy the one dimensional eigenvalue problem

p̂′′ − k̂2
mp̂− T̂ ′ = 0 (B.1)
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T̂ ′′ − k̂2
mT̂ = −RaHS(p̂′ − T̂ ) + σ̂T̂ (B.2)

p̂′(z) = T̂ (z) = 0 at ẑ = 0, 1 (B.3)

where

RaHS =
gβ∆TkH

νκ
=

gβ∆THW 2

12κν
. (B.4)

This one dimensional eigenvalue problem is once again solved using a spectral
collocation code, and the largest eigenvalues are found by searching through small
values of m.

APPENDIX C

The Eigenvalues for a Thermo-Siphon
We now present an asymptotic analysis that is used to check the numerical results

for the stability of the state of rest in a thermo-siphon.
We assume that the radius RT of the tube is small compared to the radius of

the hoop RH . This allows us to make the approximation that the flow is always
unidirectional, in the direction tangent to the midline of the hoop. That is, in our
cylindrical coordinate system u = w = 0. Continuity now requires that v(r, z, θ)
is independent of θ. Because the hoop is circular, we take the gravity vector g =
g sin(θ)eθ. We multiply the energy equation by sin(θ) and integrate from −π to
π, do the same but multiply by cos(θ), and integrate the azimuthal momentum
equation from −π to π to get the approximate equations

Pr
∂Φ̃
∂t̃

− λΨ̃ṽ = ∇̃2Φ̃ (C.1)

Pr
∂Ψ̃
∂t̃

+ λΦ̃ṽ = ∇̃2Ψ̃ (C.2)

∂ṽ
∂t̃
− ∇̃2ṽ = Φ̃ (C.3)

and the boundary conditions

ṽ(x̂, ŷ) = 0 on boundary (C.4)

Φ̃(x̂, ŷ) =
B
A

on boundary (C.5)

Ψ̃(x̂, ŷ) = 1 on boundary (C.6)

where we have the parameters the diffusion ratio (Prandtl number) (C.7) and the
control parameter (Rayleigh number) (C.8):

Pr =
ν
κ

, (C.7)

Ratherm =
gβR4

T A
κνRH

, (C.8)
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where

ṽ(x̂, ŷ, t̂) =
ν

gβAR2
T

v(r, z, θ, t) (C.9)

Φ̃(x̂, ŷ, t̂) =
1

2πA

∫ π

−π
sin(θ)T (r, z, θ)dθ (C.10)

Ψ̃(x̂, ŷ, t̂) =
1

2πA

∫ π

−π
cos(θ)T (r, z, θ)dθ (C.11)

A =
∆T
2π

∫ π

−π
f(θ) cos(θ)dθ (C.12)

B =
∆T
2π

∫ π

−π
f(θ) sin(θ)dθ (C.13)

and

x̂ = (r −RH)/RT (C.14)

ŷ = z/RT (C.15)

t̂ =
ν

R2
T

t. (C.16)

The Laplacian in these equations is the two dimensional Laplacian in the variables
x̂ and ŷ. If we assume that our cross section is circular, and we introduce polar
coordinates

ξ =
√

x̂2 + ŷ2 (C.17)

these equations reduce to one dimensional partial differential equations:

Pr
∂Φ̃
∂t̃

−RathermΨ̃ṽ =
1
ξ

∂
∂ξ

(

ξ
∂Φ̃
∂ξ

)

(C.18)

Pr
∂Ψ̃
∂t̃

+ RathermΦ̃ṽ =
1
ξ

∂
∂ξ

(

ξ
∂Ψ̃
∂ξ

)

(C.19)

∂ṽ
∂t̃
− ∇̃2ṽ = Φ̃. (C.20)

For symmetric heating we have B = 0. In this case we always have the steady state
solution Φ̃ = 0, Ψ̃ = 1. Note that this is an asymptotic result; the full solution
to the equations of motion has a small (symmetric) movement of fluid. We can
analyze the stability of this steady solution to the asymptotic equations.

Carrying out a linearized stability analysis we get the eigenvalue problem

σPrΨ = ∇2Ψ (C.21)
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σ
(

PrΨ
v

)

= ∇2
(

Φ
v

)

+
(

v
Φ

)

(C.22)

Φ(1) = Ψ(1) = w(1) = 0. (C.23)

The critical value of the parameter Ratherm where the solution goes unstable can
be found analytically. It is given by

Rathermc = s4 (C.24)

where s is the first zero of the zero order Bessel function J0. Away from the critical
value, we can compute the eigenvalues of this reduced system accurately using a
spectral method.

APPENDIX D

The Eigenvalues for a Tilted Two or Three Dimensional Box

D.1. THE EIGENVALUES OF THE TILTED TWO
DIMENSIONAL BOX

We discuss the eigenvalue problem associated with the tilted two dimensional
box. The eigenvalue problem associated with the solution discussed in (6.2) is

σu + u0
∂u
∂x

+ w
∂u0

∂z
+

1
ρ

∂p
∂x

= ν∇2u− gβ sin(θ)T (D.1a)

σw + u0
∂w
∂x

+
1
ρ

∂p
∂z

= ν∇2w + gβ cos(θ)T (D.1b)

σT + u0
∂T
∂x

+ w
∂T0

∂z
= κ∇2T (D.1c)

∂u
∂x

+
∂w
∂z

= 0 (D.1d)

where u0 and T0 are given by 27a–27d.
We also impose the boundary conditions

u(x, z) = T (x, z) = 0 for z = ±H/2 (D.2)

T (0, z)− T (L, z) = u(0, z)− u(L, z) = p(0, z)− p(L, z) = 0. (D.3)

We can reduce this to a one dimensional eigenvalue problem by assuming the
solutions are of the form

σ =
κ

H2 σ̂

u(x, z) = eik̂x/H κ
H

û(ẑ)

w(x, z) = eik̂x/H κ
H

ŵ(ẑ)
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T (x, z) = eik̂x/H∆T T̂ (ẑ)

p(x, z) = eik̂x/H ρκ2

H2 p̂(ẑ)

ẑ = z/H.

Assuming that k̂ takes on the discrete values

k̂m = 2mπ
H
L

m = 0, 1, 2, 3...

the periodic boundary conditions will be satisfied. It is then only necessary that
the functions û, ŵ, p̂, and T̂ satisfy the one dimensional eigenvalue problem:

σ̂û− Peik̂mf(ẑ)û− Peŵ
df
dẑ

+ ik̂mp̂ = Pr(û′′ − k̂2
mû)−RaPr sin(θ)T (D.4)

σ̂ŵ − Peik̂mf(ẑ)ŵ + p̂′ = Pr(ŵ′′ − k̂2
mŵ) + RaPr cos(θ)T (D.5)

σ̂T̂ − iPek̂mf(ẑ)T − ŵ = T̂ ′′ − k̂2
mT̂ (D.6)

ik̂mû + ŵ′ = 0 (D.7)

along with the boundary conditions

û(±1/2) = ŵ(±1/2) = T̂ (±1/2) = 0. (D.8)

Here

Pe = Ra sin(θ) (D.9)

and

f(ẑ) =
ẑ3

6
− ẑ

24
. (D.10)

We solve the eigenvalue problem using a spectral collocation method for m =
0, 1, 2, . . . and choose the 4 most unstable eigenvalues from these.

D.2. THE EIGENVALUES OF THE TILTED THREE
DIMENSIONAL BOX

We consider the eigenvalue problem arising from the tilted three dimensional box
discussed in section 6.3. In general it is not possible to find the eigenvalues of this
problem using separation of variables. However, it is possible to use separation of
variables for eigenfunctions that have no x velocity component and no x dependence,
or that have no y velocity component or y dependence.

If a mode has no x velocity or x dependence the advection terms in the sta-
bility equations disappear, and we get the same eigenvalue problem as for the
classical Rayleigh-Bénard problem, except that the Rayleigh number is replaced by
Ra cos(θ).

When there is no y velocity component or y dependence in the eigenfunction the
eigenvalue problem is identical to the one for the tilted two dimensional box.



44 BURROUGHS, ROMERO, LEHOUCQ AND SALINGER

ACKNOWLEDGMENTS
The authors would like to acknowledge the support obtained from many members of the MP-

Salsa and Aztec teams, including David Day, Karen Devine, Sudip Dosanjh, Gary Hennigan, Scott
Hutchinson, Roger Pawlowski, John Shadid, Ray Tuminaro, and David Womble. We also thank
Evangelos Coutsias of the University of New Mexico. This work was partially funded by the Ac-
celerated Strategic Computing Initiative and the Mathematical, Information, and Computational
Sciences programs at Sandia National Laboratories.

REFERENCES

1. W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quart. J. Applied Mathematics, 9:17–29, 1951.

2. F. H. Busse and R. M. Clever. Instabilities of convection rolls of moderate Prandtl number.
Journal of Fluid Mechanics, 91(2):319–335, 1979.

3. S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Dover, 1970.

4. K. N. Christodoulou and L. E. Scriven. Finding leading modes of a viscous free surface flow:
An asymmetric generalized eigenproblem. Journal of Scientific Computing, 3:355–406, 1988.

5. R. M. Clever and F. H. Busse. Convection rolls and their instabilities in the presence of a
nearly insulating upper boundary. Physics of Fluids, 7(1):92–97, 1995.

6. K. A. Cliffe. Numerical calculations of the primary flow exchange process in the Taylor
problem. Journal of Fluid Mechanics, 197:57–79, 1988.

7. K. A. Cliffe, T. J. Garratt, and A. Spence. Eigenvalues of the discretized Navier-Stokes
equation with application to the detection of Hopf bifurcations. Advances in Computational
Mathematics, 1:337–356, 1993.

8. K.A. Cliffe, A. Spence, and S.J. Tanvener. The numerical analysis of bifurcation with appli-
cation to fluid mechanics, pages 39–131. Acta Numerica(2000). Cambridge University Press,
2000.

9. S. M. Cox and P. C. Matthews. Instability of rotating convection. Journal of Fluid Mechanics,
403:153–172, 2000.

10. P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge University Press, New
York, 1981.

11. W.S. Edwards, L.S. Tuckerman, R.A. Friesner, and D.C. Sorensen. Krylov methods for the
incompressible Navier-Stokes equations. Journal of Computational Physics, 110(1):82–102,
January 1994.

12. A. Fortin, M. Jardak, J.J. Gervais, and R. Pierre. Localization of Hopf bifurcations in fluid
flow problems. Int. J. Numer Methods Fluids, 24:1185–1210, 1997.

13. D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and Applica-
tions. SIAM, Philadelphia, 1977.

14. B. Hendrickson and R. Leland. The Chaco user’s guide: Version 2.0. Technical Report
SAND94–2692, Sandia National Labs, Albuquerque, NM, June 1995.
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